1、准备需要进行wordcount的文件 
vi /tmp/test.txt 
(打开后随便输入一些内容,如"mu ha ha ni da ye da ye da",然后保存退出)
2、将准备的测试文件上传到dfs文件系统中的firstTest目录下 
Hadoop dfs -copyFromLocal /tmp/test.txt firstTest 
(注:如dfs中不包含firstTest目录的话就会自动创建一个,关于查看dfs文件系统中已有目录的指令为"hadoop dfs -ls")
3、执行wordcount 
hadoop jar hadoop-mapred-example0.21.0.jar wordcount firstTest result 
(注:此语句意为“对firstTest下的所有文件执行wordcount,将统计结果输出到result文件夹中”,若result文件夹不存在则会自动创建一个)
hadoop-mapred-example0.21.0.jar 在 hadoop的根目录下
root@Ubuntu:/hadoop-1.1.0/bin# ./hadoop jar ../hadoop-examples-1.1.0.jar wordcount firstTest result 
12/10/29 19:24:32 INFO input.FileInputFormat: Total input paths to process : 1 
12/10/29 19:24:32 INFO util.NativeCodeLoader: Loaded the native-hadoop library 
12/10/29 19:24:32 WARN snappy.LoadSnappy: Snappy native library not loaded 
12/10/29 19:24:33 INFO mapred.JobClient: Running job: job_201210291856_0001 
12/10/29 19:24:34 INFO mapred.JobClient:  map 0% reduce 0% 
12/10/29 19:24:52 INFO mapred.JobClient:  map 100% reduce 0% 
12/10/29 19:25:03 INFO mapred.JobClient:  map 100% reduce 100% 
12/10/29 19:25:04 INFO mapred.JobClient: Job complete: job_201210291856_0001 
12/10/29 19:25:04 INFO mapred.JobClient: Counters: 29 
12/10/29 19:25:04 INFO mapred.JobClient:   Job Counters 
12/10/29 19:25:04 INFO mapred.JobClient:     Launched reduce tasks=1 
12/10/29 19:25:04 INFO mapred.JobClient:     SLOTS_MILLIS_MAPS=16020 
12/10/29 19:25:04 INFO mapred.JobClient:     Total time spent by all reduces waiting after reserving slots (ms)=0 
12/10/29 19:25:04 INFO mapred.JobClient:     Total time spent by all maps waiting after reserving slots (ms)=0 
12/10/29 19:25:04 INFO mapred.JobClient:     Launched map tasks=1 
12/10/29 19:25:04 INFO mapred.JobClient:     Data-local map tasks=1 
12/10/29 19:25:04 INFO mapred.JobClient:     SLOTS_MILLIS_REDUCES=11306 
12/10/29 19:25:04 INFO mapred.JobClient:   File Output Format Counters 
12/10/29 19:25:04 INFO mapred.JobClient:     Bytes Written=26 
12/10/29 19:25:04 INFO mapred.JobClient:   FileSystemCounters 
12/10/29 19:25:04 INFO mapred.JobClient:     FILE_BYTES_READ=52 
12/10/29 19:25:04 INFO mapred.JobClient:     HDFS_BYTES_READ=134 
12/10/29 19:25:04 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=47699 
12/10/29 19:25:04 INFO mapred.JobClient:     HDFS_BYTES_WRITTEN=26 
12/10/29 19:25:04 INFO mapred.JobClient:   File Input Format Counters 
12/10/29 19:25:04 INFO mapred.JobClient:     Bytes Read=28 
12/10/29 19:25:04 INFO mapred.JobClient:   Map-Reduce Framework 
12/10/29 19:25:04 INFO mapred.JobClient:     Map output materialized bytes=52 
12/10/29 19:25:04 INFO mapred.JobClient:     Map input records=1 
12/10/29 19:25:04 INFO mapred.JobClient:     Reduce shuffle bytes=52 
12/10/29 19:25:04 INFO mapred.JobClient:     Spilled Records=10 
12/10/29 19:25:04 INFO mapred.JobClient:     Map output bytes=64 
12/10/29 19:25:04 INFO mapred.JobClient:     CPU time spent (ms)=6830 
12/10/29 19:25:04 INFO mapred.JobClient:     Total committed heap usage (bytes)=210698240 
12/10/29 19:25:04 INFO mapred.JobClient:     Combine input records=9 
12/10/29 19:25:04 INFO mapred.JobClient:     SPLIT_RAW_BYTES=106 
12/10/29 19:25:04 INFO mapred.JobClient:     Reduce input records=5 
12/10/29 19:25:04 INFO mapred.JobClient:     Reduce input groups=5 
12/10/29 19:25:04 INFO mapred.JobClient:     Combine output records=5 
12/10/29 19:25:04 INFO mapred.JobClient:     Physical memory (bytes) snapshot=181235712 
12/10/29 19:25:04 INFO mapred.JobClient:     Reduce output records=5 
12/10/29 19:25:04 INFO mapred.JobClient:     Virtual memory (bytes) snapshot=751153152 
12/10/29 19:25:04 INFO mapred.JobClient:     Map output records=9
4、查看结果 
hadoop dfs -cat result/part-r-00000 
(注:结果文件默认是输出到一个名为“part-r-*****”的文件中的,可用指令“hadoop dfs -ls result”查看result目录下包含哪些文件)
